

Supporting Co-adaptive Human-Agent
Relationship through Programming by
Demonstration using Existing GUIs

Abstract
Intelligent agents have become an important new type
of interface in the post-WIMP era. However, end users
lack the capability to customize, appropriate and ex-
tend current agents. In this position paper, we describe
our programming by demonstration (PBD) approach,
which leverages the end users’ familiarity with existing
apps’ GUIs by allowing them to demonstrate the de-
sired new behaviors of the agent using GUI objects in
existing apps. We also outline challenges in providing
the users with more expressive power and greater flexi-
bility for this approach, and propose a solution of using
a multi-modal interface that combines verbal instruc-
tions with the demonstrations using the GUI.

Author Keywords
Programming by demonstration; end user develop-
ment; multi-modal interface.

ACM Classification Keywords
H.5.2. User interfaces (Interaction styles).

Introduction
Intelligent agents have rapidly gained popularity in re-
cent years – they can be found in devices from weara-
bles and phones to smart home speakers and cars.
They usually interact with users through a conversa-

Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the
Owner/Author. Copyright is held by the owner/author(s).

Rethinking Interaction CHI 2018 Workshop
April 22, 2018, Montreal, QC, Canada.

Toby Jia-Jun Li
HCI Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA
tobyli@cs.cmu.edu

Igor Labutov
Machine Learning Dept.
Carnegie Mellon University
Pittsburgh, PA 15213, USA
ilabutov@cs.cmu.edu

Xiaohan Nancy Li
Computer Science Dept.
Carnegie Mellon University
Pittsburgh, PA 15213, USA
nancylxh14@gmail.com

Tom M. Mitchell
Machine Learning Dept.
Carnegie Mellon University
Pittsburgh, PA 15213, USA
tom.mitchell@cs.cmu.edu

Brad A. Myers
HCI Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA
bam@cs.cmu.edu

tional user interface (CUI) and can act on behalf of us-
ers to perform computing tasks and to interact with ex-
ternal services. Compared with GUIs, CUIs are often
more efficient (especially for tasks that require interact-
ing with multi-level menus or multiple apps), and are
usable in contexts where direct manipulation is not con-
venient or possible (e.g., while driving).

However, current agents provide little support for users
to customize their behaviors and to extend their capa-
bilities. Many agents support some degree of personali-
zation in a few popular domains (e.g., music, news) by
learning the user’s past behaviors and predicting the
user’s preferences. Besides this, users have no way to
teach the agent a new task, and have little control on
how a task should be performed by the agent when
they perceive a need for customization and automation
such as in the case of cognitive overload [12].

In our motivating study [9], we observed that since the
users lack the capability to appropriate the agents, they
often just adapt to the agents’ constraints by learning
what tasks work reliably well, figuring out effective ut-
terances for triggering these tasks, and limiting their
use of agents to only this small set of tasks (e.g.,
checking weather, setting alarms), instead of having a
co-adaptive relationship with the agent.

We envision intelligent agents playing an increasingly
important role as the interfaces for computing tasks
and services in the post-WIMP era. Therefore, our work
seeks to empower end users with no programming ex-
pertise to customize how tasks should be performed by
agents, and to teach agents new tasks.

Our system uses a programming by demonstration ap-
proach that allows end user to create task automations

by demonstrating using GUIs of existing mobile apps.
This approach leverages the available app GUIs and
more importantly, the user knowledge about how to
manipulate these GUI objects to accomplish tasks.

Instead of being invoked directly as interaction instru-
ments, GUI objects can form a vocabulary through
which users can communicate their procedural
knowledge about tasks, so the objects become building
blocks for constructing a meta-instrument (i.e., the
agent) that mediates the interactions between the user
and the GUI of the app by automating UI actions to
perform a task based on the user’s verbal input through
the CUI.

SUGILITE
We have already designed and implemented a proto-
type system named SUGILITE [9] (Figure 1) that em-
powers users to program a virtual assistant by demon-
stration on GUIs of existing third-party Android mobile
apps. Through the EPIDOSITE [10] extension, SUGILITE
also supports programming for smart home devices via
their corresponding apps, and supports triggering task
automation by notifications, app launches and events
from external web services in addition to commands
from the virtual assistant. In our study [9], SUGILITE
was shown to be an efficient way to automate repeti-
tive tasks so that they can be invoked using a voice
command rather than directly manipulating the GUI.

SUGILITE can generalize the recorded UI actions by
identifying parameters in the task, and then associating
parameters specified in the utterance with their corre-
sponding UI actions. For example, for a task with the
triggering utterance “order a venti cappuccino”, SUGI-

LITE finds two parameters (venti and cappuccino), and
matches them to the actions of choosing the cup size

Figure 1: SUGILITE’s recording
confirmation pops up when the
user demonstrates using the GUI
of the Starbucks app. (top)

SUGILITE’s interface for viewing a
script. (bottom)

from a dropdown menu, and choosing a product from
the available coffee types. It also scrapes the alterna-
tive possible values for each parameter from the GUI.
This generalization mechanism allows SUGILITE to learn
not only the exact demonstrated task, but also similar
tasks with different variations of parameter values.

Demonstrational agents like SUGILITE are also useful for
breaking down the “information silos” between apps by
supporting interoperability in the demonstration. Users
can first demonstrate locating the information of inter-
est by navigating through the GUI of one app, selecting
the GUI object containing the information using a SUGI-

LITE gesture, and then using the scraped information
later. Since information is extracted from the presenta-
tion layer, it does not require the availability of APIs in
the involved apps. Our approach enables end users
with no programming skills to automate their personal-
ized cross-app tasks, since they do not have to learn
any programming language, or how to use any APIs.

Beyond Record and Replay
Although SUGILITE has supported some generalizations
of the demonstrated actions, its current underlying
workflow is still largely record-and-replay, where the
user first demonstrates an instance of performing the
task, SUGILITE then infers parameters in the task, and
tweaks the actions accordingly when replaying if the
parameter values have changed. Our current research
focuses on providing the users with more expressive
power and greater flexibility when creating the automa-
tion, enabling them to easily construct control struc-
tures such as conditionals, iterations and triggers, to
embed reasoning and computations to handle situations
that are different than when demonstrated, to forage
reusable components in existing demonstrations, and
to edit existing automations at runtime.

However, many challenges remain. A major one is the
lack of information about the user’s rationale behind
actions. In other words, the system needs to infer why
the user did something from what the user did. So,
when the scenario changes, the agent can still perform
the correct action that matches the user’s intention.
Figure 2 shows an ambiguous demonstration where the
user’s rationale cannot be inferred from the action
alone.

Understanding user rationale, in many cases, requires
the system to know about the semantics of GUI ob-
jects. It needs to understand the meaning of the infor-
mation that each UI element communicates, and the
command that will be performed when each interactive
GUI object is operated on. While some great progress
has been made in this area (e.g., [4–8]), we are still
far from having specific and accurate semantic repre-
sentations for GUI objects that are agnostic to the low-
level platform and app-specific details. The semantics
of a GUI object is also often not only represented by
the object alone, but also in the layout of the GUI and
the object’s relationship with other objects (see Figure
3 for examples). We are developing an architecture for
extracting some semantic information, but future work
involves extracting more semantic information from the
GUI, or providing it as meta-information with the app.

Furthermore, designing the interactions for the demon-
strational interface itself is challenging. To provide us-
ers adequate expressive power when they program
with GUI objects in existing app interfaces, this “meta-
interface” needs to support at least the following types
of interactions: (1) invoke an object in the app as a
part of the demonstration; (2) extract the content or a
property from an object, (3) select an object to use it

Figure 2: An example of ambigu-
ous demonstration. This demon-
strated action can represent
many possible commands. Such
as “choose ‘Spork’”, “choose the
first entry”, “choose the cheapest
restaurant from the list”, “choose
the promoted restaurant” or
“choose the restaurant with bo-
nus points available”.

Additional information is needed
to record the true rationale of the
user so that the agent can per-
form the desired action when en-
countering a different list later.

as the target or as a parameter for an operation, etc.
Additional commands are also needed for specifying
programming logic in automation scripts.

As outlined in the instrumental interaction model [2],
due to the mismatch between the small vocabulary of
actions and the large vocabulary of commands, addi-
tional interface elements are required to specify com-
mands. Those elements often play the role of instru-
ments that can mediate interaction between a user and
a domain object. However, adding these elements is
difficult on touch-based phones, as techniques like
modifier keys or large tool palettes are not feasible due
to the limitations of the input devices and screen sizes.
It is challenging to design the interaction for the user to
specify what command to perform on a GUI object.

These added interactions for controlling the demonstra-
tion can also potentially be confusing since most of the
screen space is taken up with the GUI of the underlying
app. Consequently, it is difficult for users to distinguish
between modes of using an app directly and program-
ming by demonstration on the same app, especially if
the user needs to refer to a GUI element without invok-
ing any action (e.g., to copy the value of the high score
in Figure 3 to use later).

Verbal Instruction + Demonstration on GUIs
To address some of the above challenges, we are in-
vestigating the use of multi-modal interfaces, where
verbal instructions are supported at the same time as
direct manipulations on the GUI. This has long been
proposed as a more natural way of interaction that pro-
vides users with greater expressive power dating back
to early pioneer systems like Put-that-there [3] and
DreamSpace [11]. Recent systems such as PLOW [1]

have also demonstrated the effectiveness of verbal in-
structions in assisting the agent to learn new tasks
from demonstrations by providing extra semantic infor-
mation for demonstrated actions.

The “speak-and-point” pattern [13] in multi-modal in-
teraction can naturally separate choosing an interaction
instrument (by verbally talking about the command to
perform) from specifying the target for the interaction
(by pointing at the target). As we can often observe
from human-human interaction, one would often use
this pattern (e.g., “move this chair there”, “paint this
fence in that color”) when giving instructions. We also
hope that supporting verbal instructions in our PBD sys-
tem can enable more natural programming by allowing
users to express their intentions intuitively in a way
that closely matches their conceptual model of the task.

Based on results from our preliminary Wizard-of-Oz
studies, we make two hypotheses on how users would
perform when asked to provide verbal instructions sim-
ultaneously while demonstrating: (1) They would refer
to GUI objects available on the screen in verbal instruc-
tions (e.g., “if the number here is greater than the one
next to it, …”); (2) They would naturally use the feature
that reflects their rationale for referring to GUI objects
(e.g., for the action in Figure 2, they would say “choose
the first one / “Spork” (the text) / the cheapest one”
depending on their intentions). If both hypotheses turn
out to hold, the instructions will be very useful in infer-
ring user rationale for the ambiguous demonstration
problem illustrated in Figure 2. On the other hand, the
information about the GUI can also be used for ground-
ing the verbal instructions, helping to improve the per-
formance of speech recognition and semantic parsing.

Figure 3: Two examples where
the semantics of a GUI object is
inferred from its relationship with
other objects.

Top: The plus sign is an instru-
ment for incrementing the num-
ber of people next to it. Demon-
stration of clicking on it can be
inferred as commands such as
“click on the plus sign next to the
number of adults until the num-
ber of adults reaches 2”.

Bottom: SUGILITE needs to under-
stand that the numbers next to
the team names represent their
scores, so that the user can ex-
press implicit reasoning, such as
“choose the winning team”.

References
1. James Allen, Nathanael Chambers, George Fergu-

son, Lucian Galescu, Hyuckchul Jung, Mary Swift,
and William Taysom. 2007. PLOW: A Collaborative
Task Learning Agent. In Proceedings of the 22Nd
National Conference on Artificial Intelligence - Vol-
ume 2 (AAAI’07), 1514–1519.

2. Michel Beaudouin-Lafon. 2000. Instrumental Inter-
action: An Interaction Model for Designing post-
WIMP User Interfaces. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Sys-
tems (CHI ’00), 446–453.
https://doi.org/10.1145/332040.332473

3. Richard A. Bolt. 1980. “Put-that-there”: Voice and
Gesture at the Graphics Interface. In Proceedings of
the 7th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’80), 262–
270. https://doi.org/10.1145/800250.807503

4. Biplab Deka, Zifeng Huang, Chad Franzen, Joshua
Hibschman, Daniel Afergan, Yang Li, Jeffrey Nichols,
and Ranjitha Kumar. 2017. Rico: A Mobile App Da-
taset for Building Data-Driven Design Applications.
In Proceedings of the 30th Annual ACM Symposium
on User Interface Software and Technology (UIST
’17), 845–854.
https://doi.org/10.1145/3126594.3126651

5. Biplab Deka, Zifeng Huang, and Ranjitha Kumar.
2016. ERICA: Interaction Mining Mobile Apps. In
Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (UIST ’16), 767–
776. https://doi.org/10.1145/2984511.2984581

6. Morgan Dixon and James Fogarty. 2010. Prefab: Im-
plementing Advanced Behaviors Using Pixel-based
Reverse Engineering of Interface Structure. In Pro-

ceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems (CHI ’10), 1525–1534.
https://doi.org/10.1145/1753326.1753554

7. James R. Eagan, Michel Beaudouin-Lafon, and
Wendy E. Mackay. 2011. Cracking the Cocoa Nut:
User Interface Programming at Runtime. In Proceed-
ings of the 24th Annual ACM Symposium on User In-
terface Software and Technology (UIST ’11), 225–
234. https://doi.org/10.1145/2047196.2047226

8. Björn Hartmann, Leslie Wu, Kevin Collins, and Scott
R. Klemmer. 2007. Programming by a Sample: Rap-
idly Creating Web Applications with D.Mix. In Pro-
ceedings of the 20th Annual ACM Symposium on
User Interface Software and Technology (UIST ’07),
241–250.

9. Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers.
2017. SUGILITE: Creating Multimodal Smartphone
Automation by Demonstration. In Proceedings of the
2017 CHI Conference on Human Factors in Compu-
ting Systems (CHI ’17), 6038–6049.
https://doi.org/10.1145/3025453.3025483

10.Toby Jia-Jun Li, Yuanchun Li, Fanglin Chen, and
Brad A. Myers. 2017. Programming IoT Devices by
Demonstration Using Mobile Apps. In End-User De-
velopment (Lecture Notes in Computer Science), 3–
17. https://doi.org/10.1007/978-3-319-58735-6_1

11.Mark Lucente, Gert-Jan Zwart, and Andrew D.
George. 1998. Visualization space: A testbed for de-
viceless multimodal user interface. In Intelligent En-
vironments Symposium.

12.Wendy E. Mackay. 2000. Responding to cognitive
overload: Co-adaptation between users and technol-
ogy. Intellectica 30, 1: 177–193.

13.Sharon Oviatt. 1999. Ten Myths of Multimodal Inter-
action. Commun. ACM 42, 11: 74–81.
https://doi.org/10.1145/319382.319398

Acknowledgement
This work was supported by
Oath/Yahoo! through CMU’s
InMind project.

